A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions
نویسندگان
چکیده
The nonlinear sine-Gordon equation arises in various problems in science and engineering. In this paper, we propose a numerical scheme to solve the two-dimensional damped/undamped sine-Gordon equation. The proposed scheme is based on using collocation points and approximating the solution employing the thin plate splines (TPS) radial basis function (RBF). The new scheme works in a similar fashion as finite difference methods. Numerical results are obtained for various cases involving line and ring solitons. © 2008 IMACS. Published by Elsevier B.V. All rights reserved.
منابع مشابه
Numerical Solution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions
This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 79 شماره
صفحات -
تاریخ انتشار 2008